2DFTs as a Functor

lan Price

November 22, 2023

Outline

Category Theory: The Bare Minimum

2 DFAs

3 2DFTs

4 Category of Transition Diagrams

5 2DFTs as a Functor

Table of Contents

Category Theory: The Bare Minimum

2 DFAs

3 2DFTs

4 Category of Transition Diagrams

DESTS as a Functor

Categories

High-level Idea

Category theory is an abstract theory of functions.

Definition (Category)

A category C consists of a collection of objects A, B, C, \ldots and a collection of arrows f, g, h, \ldots such that

- For any arrow f, there are objects dom(f) and cod(f), called the *domain* and *codomain* of f respectively. We write f : A → B when A = dom(f) and B = cod(f).
- Given any two arrows $f : B \to C$, $g : A \to B$, there is an arrow $f \circ g$, called the *composition* of f and g. Composition is associative.
- Given any object A, there is an *identity arrow* on A id_A : A → A, which are identities w.r.t. composition.

Categories (Examples)

Example

Most mathematical objects can be bundled into categories: Set, Grp, $Vect_{\mathbb{R}}$, ...

Example

Various objects can be thought of as categories: monoids, posets, ...

Ian Price			-		
	12	n	\mathbf{P}	20.	C 0
101111100	- I a				<u>_</u>

Functors

Definition (Functor)

Given categories C and D, a functor $F : C \to D$ is a pair of mappings F_1 on objects and F_2 on arrows such that

- Given any C-object X, $F_1[X]$ is a D-object.
- Given any C-arrow $f : A \to B$, there is a D-arrow $F_2[f] : F_1[A] \to F_1[B]$, such that F_2 satisfying:
 - For all C-objects X,

$$F_2[\mathrm{id}_X] = \mathrm{id}_{F_1[X]} \, .$$

For all \mathcal{C} -arrows $f: B \to C$ and $g: A \to B$,

 $F_2[f] \circ F_2[g] = F_2[f \circ g].$

Usually we use F for both F_1 and F_2 .

Functorial / Categorical Semantics

High-level Idea

We will often view functors from C to D as *models* or *interpretations* of the *theory* C in D.

Example

A monoid \mathcal{M} is a category with one object. A functor $\mathcal{M} \to \textbf{Set}$ is a monoid action.

The "Theory" of Automata

Definition (**Shape**_{Σ})

For any finite alphabet Σ , there is a three object category **Shape**_A generated by the following finite graph, where there is one morphism for each $a \in A$.

in
$$\xrightarrow{\triangleright}$$
 states $\xrightarrow{\triangleleft}$ out

We represent words $w \in \Sigma^*$ by a composition of arrows, e.g., 01100 by \triangleright ; 0; 1; 1; 0; 0; \triangleleft , where f; $g = g \circ f$.

Table of Contents

1 Category Theory: The Bare Minimum

2 DFAs

3 2DFTs

4 Category of Transition Diagrams

DESTS as a Functor

DFAs

Definition (Deterministic Finite Automata)

A (deterministic) finite automaton \mathcal{T} is a tuple ($Q, \Sigma, \delta, q_0, F$), where

- Q is a finite set of *states*,
- Σ is a finite alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the *initial state*,
- $F \subseteq Q$ is the set of *final states*.

Example

DFAs as a Functor

Definition (DFA (revised))

A (deterministic) finite automaton with input alphabet Σ is a functor F: Shape_{Σ} \rightarrow Set such that $F(in) = \{\bullet\}$, F(states) is non-empty and $F(out) = \{false, true\}$.

We recover the previous definition by setting

- Q = F(states),
- $q_0 = F(\triangleright)(\bullet)$
- $\delta(a, -) = F(a)$
- $x \in F$ iff $F(\triangleleft)(x) =$ true.

Given a word $w = \triangleright; w_1; \ldots; w_n; \triangleleft$ then $F(w) : \{\bullet\} \rightarrow \{\text{false, true}\}$ is the constantly true function if and only if w is in the language recognised by the DFA.

Table of Contents

1 Category Theory: The Bare Minimum

2 DFAs

3 2DFTs

4 Category of Transition Diagrams

5 2DFTs as a Functor

$2\mathsf{DFTs}$

Definition (Two-way Deterministic Transducer)

A two-way deterministic transducer (2DFT) T is a tuple ($Q, \rho, \Sigma, \Gamma, \delta, q_0, F$), where

- Q is a finite set of *states*,
- $ho: Q
 ightarrow \{-1,1\}$ is a direction map^a,
- Σ is a finite *input alphabet*,
- Γ is a finite *output alphabet*,
- $\delta: \Sigma \sqcup \{\triangleright, \triangleleft\} \to (Q \rightharpoonup \Gamma^{\star} \times Q)$ is the *transition function*
- $q_0 \in Q^{
 ightarrow}$ is the *initial state*,
- $F \subseteq Q$ is a set of *final states*.

^aWe write $q^{
ightarrow}$ if ho(q)=1 and $q^{
ightarrow}$ if ho(q)=1

A 2DFT \mathcal{T} defines a partial function $\llbracket \mathcal{T} \rrbracket : \Sigma^* \to \Gamma^*$ where the input string $\triangleright w_1 \dots w_n \triangleleft$ is sent to a "valid" sequence of configurations by δ .

2DFT Example

Example

The following 2DFT takes any string and ensures that every 2 is preceded by a 1 by adding 1s if necessary.

For now, we will focus on a specific subclass of 2DFTs.

Definition (Two-way Reversible Transducer)

A two-way reversible transducer (2RFT) T with input alphabet Σ and output alphabet Γ is a 2DFT such that

- F is a singleton
- $\delta(a)$ is a partial *injection* for each $a \in \Sigma$.

Compared with DFAs we have more structure here

- We can go forwards and backwards along the tape
- We need some way to "output" strings
- We require injectivity

This is solved by introducing a new category of "transition diagrams" TransDiag.

Table of Contents

1 Category Theory: The Bare Minimum

2 DFAs

3 2DFTs

4 Category of Transition Diagrams

5 2DFTs as a Functor

Objects

Objects are binary¹ words², which we write vertically top to bottom

 $^1\mathrm{We}$ write the objects as + and - rather than 1 and 0 $^2\mathrm{technically,\ multisets}$

lan Price

Morphisms

Morphisms are special "diagrams" between these words subject to some restrictions regarding polarity and vertex degree.

Edges are labelled with strings in the output alphabet.

Composition

In a nutshell, glue them together and then concatenate strings along the path³.

2DFTs as a Functor

³If a path went into the "middle" it just disappears in the output

Identities

Category Extras

You do not have to understand this slide!

This is not just a category, it is a compact-closed category:

- Monoidal structure comes from taking disjoint union of objects / diagrams,
- Objects have duals by flipping polarity and reversing,
- "Cups" and "caps" come from "bending" the identity morphisms.

We can think of the category as being freely generated by arrows of the form $+ \xrightarrow{a} +$. Strikingly similar to Temperley-Lieb Categories from physics / knot theory.

Table of Contents

1 Category Theory: The Bare Minimum

2 DFAs

3 2DFTs

4 Category of Transition Diagrams

5 2DFTs as a Functor

2RFTs as a Functor

Definition (Two-way Reversible Transducer)

A two-way reversible transducer (2RFT) \mathcal{T} with input alphabet Σ and output alphabet Γ is a functor F: **Shape**_{Σ} \rightarrow **TransDiag** such that

- *F*(states) is a non-empty binary word corresponding to the *ordered* directed set of states of the transducer.
- F(in) and F(out) are both the binary word +.

For any word $w \in \Sigma^*$ we have a planar diagram $F(w) : + \to +$ which is either the empty diagram or a single path with label *I*. This corresponds to the partial function $[\mathcal{T}] : \Sigma^* \to \Gamma^*$.

2RFT-Functor Example

Let's take the same example from before and find the equivalent functor.

Example

The following 2RFT takes any string and ensures that every 2 is preceded by a 1 by adding 1s if necessary.

2RFT-Functor Example (cont.)

It has 5 states: $q0^{\rightarrow}$, $q1^{\rightarrow}$, $q2^{\rightarrow}$, $q3^{\leftarrow}$, $q4^{\rightarrow}$. Using that order and assigning + to the forward vertices, i.e., q_i^{\rightarrow} , and - to the backward vertices, i.e., q_j^{\leftarrow} , we obtain the word F(states) = + + + - +.

The following table represents the transition map δ

2RFT-Functor Example (cont.)

We can read off each column a of the table as the diagram F(a) mapping states to states with the appropriate label on each edge.

So that's our functor.

2RFT-Functor Example (cont.)

If we take a sample run of our transducer on input w = 202112 then $F(\triangleright; w; \triangleleft) = F(\triangleright); F(2); F(0); F(2); F(1); F(1); F(2); F(\triangleleft);$.

From which we can read out the composition is merely the single path $+ \rightarrow +$ with label 12012112 as expected.

Where do we go from here?

- We are interested not just in these diagrams, but *planar* diagrams.
- Planar diagrams give an autonomous category (not symmetric).
- These planar diagrams give rise to aperiodic transducers.
- Links to the non-commutative linear lambda calculus.

Thank You! Any Questions?