Two-Way Reversible Transducers as Functors

lan Price countingishard.org

Swansea University

British Colloquium for Theoretical Computer Science April 4, 2024

Outline

1 Category Theory: The Bare Minimum

2 DFAs

3 2RFTs

4 Category of Transition Diagrams

5 2RFTs as a Functor

Categories

High-level Idea

A Category is an abstract theory of functions.

Definition (Category)

A category C consists of a collection of objects A, B, C, \ldots and a collection of arrows f, g, h, \ldots such that

- Any arrow $f : \operatorname{dom}(f) \to \operatorname{cod}(f)$ has two objects $\operatorname{dom}(f)$ and $\operatorname{cod}(f)$.
- Given two compatible arrows $f : B \to C$, $g : A \to B$, there is a *composite arrow* $f \circ g : A \to C$.
- There is an *identity arrow* for every object A, $id_A : A \rightarrow A$.
- \circ is associative and id_A are identities for \circ .

Categories (Examples)

Example

Most mathematical objects can be bundled into categories: Set, Rel, Vect_ \mathbb{K} , ...

Example

Various objects can be thought of as categories: monoids, posets, ...

Example (3)

You can freely generate categories from graphs

$$1 \xrightarrow{f} 2$$

$$h = g \circ f \xrightarrow{g} 3$$

Functors

High-level Idea

Functors are category homomorphisms.

Definition (Functor)

A functor $F : C \to D$ between categories C and D is a pair of mappings on objects and arrows such that

- Given any C-object X, F(X) is a D-object.
- Given any C-arrow $f : A \to B$, $F(f) : F(A) \to F(B)$ is a D-arrow.
- $F(f \circ g) = F(f) \circ F(g)$
- $F(\operatorname{id}_A) = \operatorname{id}_{F(A)}$

Essentially, this entire talk is giving a bunch of examples.

Useful analogy We will often view a domain category C as a kind of "syntax" and functors $C \to D$ as a kind of "semantics" for it.

The "Syntax" of Automata

Definition (Shape_{Σ})

For any finite alphabet Σ , there is a three object category **Shape**_{Σ} generated by the following finite graph, where there is one morphism for each letter $a \in \Sigma$.

in
$$\xrightarrow{\triangleright}$$
 states \xrightarrow{a} out

words over
$$\Sigma \cong$$
 morphisms in \rightarrow out
"abc" $\mapsto \triangleright; a; b; c; \triangleleft$

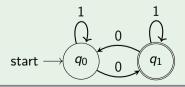
DFAs

Definition (Deterministic Finite Automata)

A (deterministic) finite automaton \mathcal{T} is a tuple ($Q, \Sigma, \delta, q_0, F$), where

- Q is a finite set of *states*,
- Σ is a finite alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the *initial state*,
- $F \subseteq Q$ is the set of *final states*.

Example



Ian Price (Swansea University)

Two-Way Reversible Transducers as Functors

DFAs as a Functor

Definition (DFA (revised))

A (deterministic) finite automaton with input alphabet Σ is a functor F: Shape_{Σ} \rightarrow Set such that $F(in) = \{\bullet\}, F(states)$ is non-empty and $F(out) = \{false, true\}$.

We recover the previous definition by setting

- Q = F(states),
- $q_0 = F(\triangleright)(\bullet)$
- $\delta(-,a) = F(a)$
- $x \in F$ iff $F(\triangleleft)(x) =$ true.

 $F(\triangleright; w_1; \ldots; w_n; \triangleleft) : \{\bullet\} \rightarrow \{\text{false, true}\}\$ is the constantly true function if and only if $w_1 \ldots w_n$ is in the language recognised by the DFA.

Other familiar examples

Definition (NFA)

A nondeterministic finite automaton with input alphabet Σ is a functor F: Shape_{Σ} \rightarrow Rel such that $F(in) = \{\bullet\}, F(states)$ is non-empty and $F(out) = \{false, true\}$.

Definition (Weighted automata over \mathbb{K})

A weighted finite automaton with input alphabet Σ over the field \mathbb{K} is a functor $F : \mathbf{Shape}_{\Sigma} \to \mathbf{Vect}_{\mathbb{K}}$ such that $F(in) = F(out) = \mathbb{K}$ and F(states) is the vector space spanned by the states.

Subsequential Transducers can be defined if I use monads, but I promised the bare minimum of category theory.

$2\mathsf{DFTs}$

Definition (Two-way Deterministic Transducer)

A two-way deterministic transducer (2DFT) T is a tuple (Q, ρ , Σ , Γ , δ , q_0 , F), where

- Q is a finite set of *states*,
- $ho: Q
 ightarrow \{-1,1\}$ is a direction map^a,
- Σ is a finite *input alphabet*,
- Γ is a finite *output alphabet*,
- $\delta: \Sigma \sqcup \{\triangleright, \triangleleft\} \to (Q \rightharpoonup \Gamma^{\star} \times Q)$ is the *transition function*
- $q_0 \in Q^{
 ightarrow}$ is the *initial state*,
- $F \subseteq Q$ is a set of *final states*.

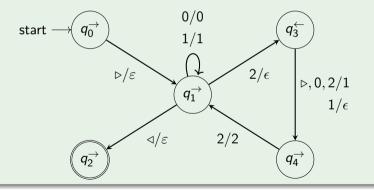
^aWe write $q^{
ightarrow}$ if ho(q)=1 and $q^{
ightarrow}$ if ho(q)=-1

A 2DFT \mathcal{T} defines a partial function $[\![\mathcal{T}]\!]: \Sigma^* \to \Gamma^*$ where the input string $\triangleright w_1 \dots w_n \triangleleft$ is sent to a "valid" sequence of configurations by δ .

2DFT Example

Example

The following 2DFT takes any string and ensures that every 2 is preceded by a 1 by adding 1s if necessary.



We will focus on a specific subclass of 2DFTs.

Definition (Two-way Reversible Transducer)

A two-way reversible transducer (2RFT) T with input alphabet Σ and output alphabet Γ is a 2DFT such that

- F is a singleton
- $\delta(a)$ is a partial *injection* for each $a \in \Sigma$.

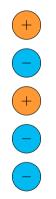
Compared with DFAs we have more structure here

- We can go forwards and backwards along the tape
- We need some way to "output" strings
- We require injectivity

This is solved by introducing a new category of "transition diagrams" TransDiag.

Objects

Objects are binary¹ words, which we write vertically top to bottom

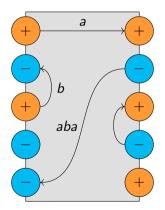


 $^1 {\rm We}$ write the objects as + and - rather than 1 and 0

Morphisms

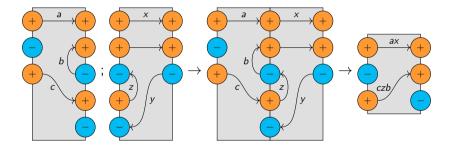
Morphisms are special "diagrams" between these words subject to some restrictions regarding polarity and vertex degree.

Edges are labelled with strings in the output alphabet.

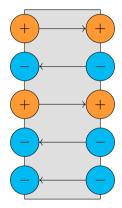


Composition

In a nutshell, glue them together and then concatenate strings along the path.



Identities



Definition (Two-way Reversible Transducer)

A two-way reversible transducer (2RFT) \mathcal{T} with input alphabet Σ and output alphabet Γ is a functor $F : \mathbf{Shape}_{\Sigma} \to \mathbf{TransDiag}_{\Gamma}$ such that

- F(states) is a non-empty binary word,
- F(in) and F(out) are both the binary word +.

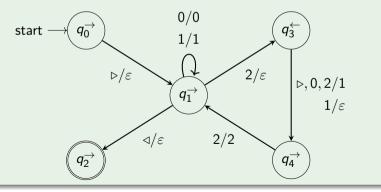
For any word $w \in \Sigma^*$ we have a planar diagram $F(w) : + \to +$ which is either the empty diagram or a single path with label *I*. This gives rise to the partial function $[\mathcal{T}] : \Sigma^* \to \Gamma^*$.

2RFT-Functor Example

Let's take the same example from before and find the equivalent functor.

Example

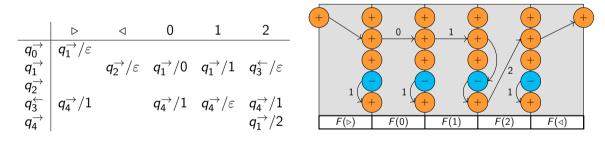
The following 2RFT takes any string and ensures that every 2 is preceded by a 1 by adding 1s if necessary.



Ian Price (Swansea University)

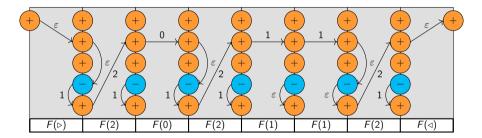
Two-Way Reversible Transducers as Functors

2RFT-Functor Example (cont.)



2RFT-Functor Example (cont.)

To run a transducer on a string, simply paste diagrams together, e.g., take w = 202112



 $F(\triangleright; w; \triangleleft) = F(\triangleright); F(2); F(0); F(2); F(1); F(1); F(2); F(\triangleleft) = + \xrightarrow{12012112} +$

Where do we go from here?

- We are interested not just in these diagrams, but *planar* diagrams.
- Planar diagrams give an autonomous category (not symmetric).
- Links to the non-commutative linear / affine lambda calculus.

Theorem (Pradic & Price, '24)

The following are equivalent:

- Affine string-to-string λ_{\wp} definable functions
- first-order string transductions
- planar reversible two-way finite transducers

References

- Colcombet and Petrişan, "Automata Minimization: a Functorial Approach"
- Colcombet, Petrişan and Stabile, "Learning automata and transducers: a categorical approach"
- Nguyễn, Noûs, and Pradic, "Two-way automata and transducers with planar behaviours are aperiodic"
- Pradic and Price, "Implicit automata in λ -calculi III: first-order transductions and affine planar λ -terms" (Coming Soon)

Thank You! Any Questions?