Implicit automata in λ -calculi III: affine planar string-to-string functions

Cécilia Pradic

lan Price countingishard.org

Swansea University

Mathematical Foundations of Programming Semantics
June 2024

Previous Work (STLC)

Theorem (Hillebrand & Kanellakis '96)

Let $L \subseteq \Sigma^*$. The following are equivalent:

- L can be defined by a simply typed λ -term of type $\operatorname{Str}_{\Sigma}[\tau] \to \operatorname{Bool}$ for some simple type τ
- L is a regular language

Church Encodings

Definition (Bool)

 $\mathrm{Bool} \coloneqq \mathbb{o} \to \mathbb{o} \to \mathbb{o}$

 $\mathsf{Church}(\mathsf{true}) \coloneqq \lambda x.\,\lambda y.\,x$

Church(false) := λx . λy . y

Definition (Str_{Σ})

Fix alphabet $\Sigma = \{a_1, \ldots, a_n\}$.

$$\operatorname{Str}_{\Sigma}[\tau] := \underbrace{(\tau \to \tau) \to \cdots \to (\tau \to \tau)}_{n \text{ times}} \to \tau \to \tau$$

n times

 $\mathsf{Church}(w_1\cdots w_m) := \lambda a_1.\cdots \lambda a_n.\,\lambda \varepsilon.\,w_1(\cdots (w_m\,\varepsilon))$

 $\mathrm{append}_{a} = \lambda w. \, \lambda a_{1}. \, \cdots \, \lambda a_{n}. \, \lambda \varepsilon. \, w \, a_{1} \, \cdots \, a_{n} \, (a \, \varepsilon)$

Proof Idea (Soundness Only)

Interpret λ in **FinSet**:

- $[[0]] = \{0, 1\}$
- $\bullet \ \llbracket \tau \to \sigma \rrbracket = \llbracket \tau \rrbracket \to \llbracket \sigma \rrbracket$

For each term $t : \operatorname{Str}_{\Sigma}[\tau] \to \operatorname{Bool}$, obtain DFA:

- $Q = [[\operatorname{Str}_{\Sigma}[\tau]]]$
- $\delta(a) = [[append_a]]$
- $q_0 = \llbracket \epsilon
 rbracket$
- $F = \{q \in Q : \llbracket t \rrbracket(q) = \llbracket \mathsf{Church}(\mathsf{true}) \rrbracket \}$

Key Observation

$$\delta(w)(q_0) = [\![\mathsf{Church}(w)]\!]$$

Main Theorem

Theorem

The following are equivalent:

- Affine string-to-string $\lambda \wp$ definable functions

first-order string transductions planar reversible two-way finite transducers

Nguyễn, Noûs, and Pradic '23

Affine string-to-string definable functions

$\lambda\wp=$ Non-Commutative Affine Lambda Calculus

- $\checkmark \lambda x. \lambda y. y$
- $\times \lambda x. \lambda y. x y y$
- × λx. λy. y x

$$A, B := 0 \mid A \multimap B \mid A \to B$$

$$\operatorname{Str}_{\Sigma}[\tau] := \underbrace{(\tau \multimap \tau) \to \cdots}_{\mid \Sigma \mid \text{ times}} \to \tau \to \tau$$

Definition (Affine Definable)

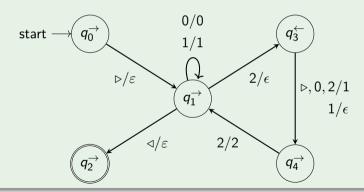
A function $f: \Sigma^* \to \Gamma^*$ is called *affine* λ_{\wp} -definable when

- \bullet exists a purely affine type κ , and
- a λ -term $f : \operatorname{Str}_{\Sigma}[\kappa] \longrightarrow \operatorname{Str}_{\Gamma}$, s.t.
- $\forall s \in \Sigma^*, \mathsf{Church}(f(s)) =_{\beta\eta} \mathsf{f} \ \mathsf{Church}(s)$

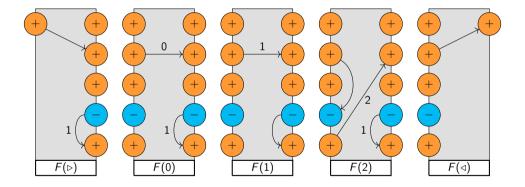
Two-Way Transducers

Example

The following 2DFT takes any string and ensures that every 2 is preceded by a 1 by adding 1s if necessary.



Two-Way Transducers (cont.)



Category of Words

Definition (Shape $_{\Sigma}$)

For any finite alphabet Σ , there is a three object category $Shape_{\Sigma}$ generated by the following finite graph,

words over
$$\Sigma \cong \text{morphisms in} \to \text{out}$$

"abc" $\mapsto \triangleright : a : b : c : \triangleleft$

Automata as Functors

Definition (Automaton)

For any category C and objects $I, O \in C$, a (C, I, O)-automaton with input alphabet Σ

- ullet a functor ${\mathcal A}: {f Shape}_\Sigma o {\mathcal C}$, s.t.,
- $\mathcal{A}(\mathrm{in}) = I$, and
- $\mathcal{A}(\text{out}) = O$.

Its semantics is the map $\Sigma^* \to [I,O]_{\mathcal{C}}$ given by $w \mapsto \mathcal{A}(\triangleright)$; $\mathcal{A}(w)$; $\mathcal{A}(\triangleleft)$.

Definition (DFA)

A deterministic finite automaton with input alphabet Σ is a (Set, $\{\bullet\}$, $\{\mathrm{true}, \mathrm{false}\}$)-automaton.

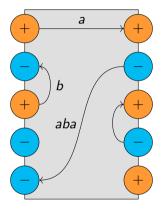
Transition Diagrams

Compared with DFAs, 2RFTs have more structure:

- We can go forwards and backwards along the tape
- We need some way to "output" strings
- We require reversibility & planarity

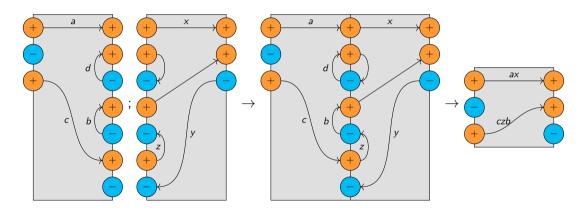
This is solved by introducing a new category of "transition diagrams" TransDiag.

Objects & Morphisms



Composition

Glue morphisms together and concatenate strings



2PRFTs as a Functor

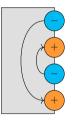
Definition (2PRFT)

A two-way planar reversible transducer \mathcal{T} with input alphabet Σ and output alphabet Γ is a (**TransDiag**_{Γ}, ε , +--)-automaton with input alphabet Σ .

Category Round-Up

TransDiag is very Nice™

- Strict Monoidal
- Poset⊥-enriched
- Pivotal Category (dualizing structure)
- Suitable for interpreting λ_{\wp}



Interpreting $\lambda \wp$ in **TransDiag**

Interpreting Reductions

Lemma

- If $t \rightarrow_{\eta} u$, then $\llbracket t \rrbracket = \llbracket u \rrbracket$.
- If $t \rightarrow_{\beta} u$, then $[t] \geq [u]$.

Corollary

If t has a normal form t_{NF} , then $[t_{NF}] \leq [t]$.

Main Theorem

Theorem

The following are equivalent:

- **1** Affine string-to-string $\lambda \wp$ definable functions
- first-order string transductions
- planar reversible two-way finite transducers

We turn to the proof that (1) implies (3).

Proof of Soundness

Step 1. Apply the following lemma to obtain o, d_i , d_{ϵ} .

Lemma

Let $\Sigma = \{a_1, \ldots, a_n\}$ and $\Gamma = \{b_1, \ldots, b_k\}$ be alphabets. Up to $\beta\eta$ -equivalence, every term of type $\operatorname{Str}_{\Sigma}[\kappa] \multimap \operatorname{Str}_{\Gamma}$ is of the shape

$$\lambda s. \lambda b_1....\lambda b_k. \lambda \epsilon. o (s d_1 ... d_n d_{\epsilon})$$

where o, d_{ϵ} and the d_is have typing derivations

$$\underline{\Gamma}$$
; $\cdot \vdash o : \kappa \multimap o$ $\underline{\Gamma}$; $\cdot \vdash d_i : \kappa \multimap \kappa$ $\underline{\Gamma}$; $\cdot \vdash d_{\epsilon} : \kappa$

Proof of Soundness (cont.)

Step 2. Apply the interpretation to those terms

$$\llbracket d_{\mathsf{a}} \rrbracket : \mathsf{I} \to \llbracket \kappa \rrbracket \multimap \llbracket \kappa \rrbracket \qquad \llbracket \mathsf{o} \rrbracket : \mathsf{I} \to \llbracket \kappa \rrbracket \multimap + - \qquad \llbracket d_{\epsilon} \rrbracket : \mathsf{I} \to \llbracket \kappa \rrbracket$$

Step 3. Define 2PRFT

$$\mathcal{T}(\mathsf{a}) \ = \ \mathsf{\Lambda}^{-1}_{\mathsf{I},\llbracket\kappa\rrbracket,\llbracket\kappa\rrbracket}(\llbracket d_{\mathsf{a}}\rrbracket) \qquad \mathcal{T}(\mathrel{\triangleleft}) \ = \ \mathsf{\Lambda}^{-1}_{\mathsf{I},\llbracket\kappa\rrbracket,\llbracket\mathfrak{o}\rrbracket}(\llbracket \mathfrak{o}\rrbracket) \qquad \mathcal{T}(\mathrel{\trianglerighteq}) = \llbracket d_{\epsilon}\rrbracket$$

Step 4. Do a little calculation to check this computes the same function

Proof of Soundness (cont.)

For input word
$$w = w_1 \dots w_n \in \Sigma^*$$
, let $f(w) = w'$.

$$\mathcal{T}(\triangleright w \triangleleft) = \mathcal{T}(\triangleleft) \circ \mathcal{T}(w_n) \circ \ldots \circ \mathcal{T}(w_1) \circ \mathcal{T}(\triangleright)$$

$$= \cdots$$

$$= [o (d_{w_n} \ldots (d_{w_1} d_{\epsilon}) \ldots)]$$

$$\geq [Church(w')]$$

$$=$$

 \dots but \geq is really = because diagram is maximal.

Wrapping Up

Other direction: apply Krone-Rhodes decomposition theorem

Extensions

- ullet Dropping Planarity: first-order o regular
- $\operatorname{Str}_{\Sigma}[\kappa] \to \operatorname{Str}_{\Gamma}$: first-order comparison-free functions (?)

Broader Picture

 $\operatorname{Str}_{\Sigma}[A] \longrightarrow \operatorname{Bool}$ with A linear (adapted as needed):

λ -calculus	languages	status
simply typed	regular	✓ [Hillebrand & Kanellakis '96]
linear or affine	regular	✓
non-commutative linear or affine	star-free	✓

 $\operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ with A affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	weird (?)	?
affine	regular functions	✓
non-commutative affine	first-order regular fn.	✓
linear/affine with additives	regular functions	✓
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

References

- Colcombet and Petrişan, "Automata Minimization: a Functorial Approach"
- Hillebrand and Kanellakis, "On the expressive power of simply typed and let-polymorphic lambda calculi"
- Nguyễn and Pradic, "Implicit Automata in typed λ -calculi I: Aperiodicity in a Non-Commutative Logic"
- ullet Nguyễn, Noûs, and Pradic, "Implicit Automata in typed λ -calculi II: streaming transducers vs categorical semantics"
- Nguyễn, Noûs, and Pradic, "Two-way automata and transducers with planar behaviours are aperiodic"

Thank You! Any Questions?